
AMD 2900 Processor Simulator

stud. Vlad Ion
University POLITEHNICA of

Bucharest, Computer Science
Department

313 Splaiul Independentei,
 sect. 6, 77206, Bucharest

ROMANIA

vladion@home.ro

stud. Sorin Toma
University POLITEHNICA of

Bucharest, Computer Science
Department

313 Splaiul Independentei,
 sect. 6, 77206, Bucharest

ROMANIA

sorintoma50@xnet.ro

Ph.D. Decebal Popescu
University POLITEHNICA of

Bucharest, Computer Science
Department

313 Splaiul Independentei,
 sect. 6, 77206, Bucharest

ROMANIA

decebal@csit-sun.pub.ro

ABSTRACT
A simulation software for the AMD 2901/2909 processor was created in order to be used for didactic purposes.
It consists of two major components, the program editor and the simulator, and it is designed for an easy
understanding of the processor internal workings. The application is built on the .NET technology using C# and
it is used in our university as an educational resource.

Keywords
Processor simulator, AMD 2901, AMD 2909, educational software, .NET technology.

1. INTRODUCTION
The idea of developing a processor simulator was
based on some observations we made at one of the
most important courses studied at the Computer
Science Faculty, which is the Digital Computers
course. One of the main topics is the study of the
AMD 2901/2909 microprocessor. For this topic
students have to understand the general architecture
of the microprocessor, with its resources and the way
they are interconnected as well as how it can be
programmed, and the specifications of its assembly
language. The main activity at the seminaries is to
solve certain tasks using/creating micro programs for
this processor.
Because all the activities were focused on theoretical
aspects, sometimes very hard to understand without a
practical support, we felt the need for a tool that
actually shows how a processor works at the register
transfer level (RTL), executing a custom micro
program. This way many of the practical aspects of

programming a microprocessor can be evaluated,
which leads to an easier and better understanding of
the course subject. This was the project’s starting
point. Two types of objectives were set – features for
the application and technology requirements. The
application should have a user-friendly, easy-to-use
micro program editor in order to cope with the
stiffness of the assembly language syntactic rules,
and describe the functions behind the mnemonics.
There should be also a simulator to run the program,
and show the resources – Arithmetic Logic Unit
(ALU), RAM, Shift Registers, source selector,
control unit, stack – and their status, several inputs
and outputs, values of specific flags at every step of
the execution.
For the technology the main requirements were about
portability – the application was distributed to almost
all of the Computer Science Faculty students, which
attended the Digital Computers course, and should
have run on everyone’s operating system – and the
existence of powerful tools for fast application
development as well as a powerful and fast
programming language – the deadline for the project
was short. Under these requirements we chose the
.Net technology and the C# language, and Microsoft
Visual Studio .Net as a development environment.
After testing and inherent bug fixing the application
has reached its goal being used by almost all students
studying Digital Computers, testing their programs,
and offering a better understanding of the processor’s
inner functions.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

2. GENERAL DESCRIPTION
The AMD# application (can be found at [Web00])
consists of two main components: the editor and the
simulator. The first step of the simulation is the
creation of a micro program (several lines
symbolizing the hardware commands accepted by the
microprocessor) in the editor and the second step is
the actual simulation of the given program in the
simulator window (the user can see the program flow
and the evolution of flags, resources and results in
the microprocessor).
The AMD 2900 family of integrated units consists of
bit-slice processors, that is processors that work with
data units that are not a multiple of 8 (there are units
that process 4, 8, 12,16 bits of data, and so on). A
complete unit is made of two basic units, the
arithmetic and logic unit (ALU) AMD2901 and the
control unit (CU) AMD2909, and some auxiliary
circuits. For a detailed description of the structure
and functionality see [Petr01], [Web02], [Web03].
The control unit’s main component is the micro
sequencer that decides the address of the next
microinstruction based on the current one and the
status flags (it can do conditional or direct jumps,
calls for a subroutine and returns from the subroutine
based on an internal stack, etc.). The CU generates in
the end a command that the ALU can understand.
The ALU has an internal memory of 16 4-bit words,
some registers and the unit that accomplishes the
actual requested operation and generates the status
flags (the zero flag indicating that the result is zero,
the result overflow flag, the carry flag, etc).

All the data that is processed in the unit is a multiple
of 4 bits because the basic ALU and CU units work
with 4-bit data and addresses (there are 4 bits
required to access the 16 locations in the ALU
memory). The basic ALU’s can be connected in a
serial fashion in order to process larger data and the
CU’s can be connected in parallel to extend the
memory address space.
The micro program format that can be seen in the
editor closely reflects the internal structure of these
units. Each micro instruction that makes up the
program is a concatenation of bit groups, each used
by a certain part of the unit (in the current
implementation 4-bit and 8-bit programs can be
simulated; in the 4-bit case the 32-bit instruction has
a block of bits 27 to 24 representing the command
for the micro sequencer, the 31 to 28 group
representing the jump address, used only if the other
group requests a jump operation, another group
selects the needed ALU operation and so on; the
instruction bits have been labeled from 31 to 0). The
unit can accept external 4-bit or 8-bit data and for
reasons of simplicity and ease of understanding this
data has been integrated in the instruction code as the
last 4 or 8 bits.
This seemingly complex instruction form is
necessary because the programming is done at a very
low machine level. The necessary bits are taken
directly form the instruction and used by the unit’s
components with almost no conversions. This makes
the unit work very fast and be completely automated.
The negative aspect of this hardware programming is
that the unit cannot generate dynamic code and data,

Figure 1. The Editor Window

and all the external data and jump addresses are set
in hardware from the beginning.

3. APPLICATION INTERFACE
As it was previously mentioned, there are two
program components which directly reflect the
hardware structure of the AMD unit.
At program start the user can choose the number of
bits the ALU and CU work with, 4 or 8 in the current
implementation.
The editor window (as can be seen in Figure 1) is
made up of a table and a comments field in the
upper part, that show the structure of the currently
entered program and a brief description of its
purpose. In the lower part, there are a series of
combo boxes and buttons that allow the creation of a
micro instruction. Each block that makes up the
instruction is selected by one combo box and its
purpose is explained by a tool tip; this helps the
students write the programs fasters by removing most
of the need to check the detailed tables explaining
each function, from the course. There are also
buttons for inserting new lines and deleting previous
lines from the program. The students can also save
their programs in the editor or load previously
written demos.
After finishing the program one can push the “Test”
button to get to the simulator window (the simulator
window style can be changed from the radio buttons
next to the "Test" button). This window, as can be
seen in Figure 2, has three main parts. On the left
there is a table presenting the currently simulated
program and the binary form of the current
instruction. In the middle there is the representation
of the ALU internal structure, showing the internal
memory and registers content, the input instruction
data blocks and the result and status flags. Lastly, the

CU on the right shows the current instruction and
jump address, the micro sequencer structure (stack
content, stack top pointer and flags) and the
computed next instruction index. The content
changing of all these resources during execution can
be observed by stepping forward and backward in
the program.

4. APPLICATION STRUCTURE
The modularity of the C# object-oriented language
was used to separate the interface from the
functionality. Thus two interface modules were
created, one for the editor and one for the simulator
(the “sim.cs” and “edit.cs” files), using
windows forms and the visual designer. This greatly
sped up the application building. There were two
modules needed for the ALU and CU and some
abstract classes that define the general structure of
the AMD instruction, the ALU RAM model etc.
The classes implementing the basic units follow the
hardware model. The CU class contains an
instantiation of the ALU and one of the sequencer. It
passes the needed blocks of bits from the instruction
to the sequencer and ALU just like the real CU does.
Then the simulator class only instantiates the CU and
receives a vector of instruction data that it sends to
the CU, line by line, during the process of stepping
through the program. The simulator and the
instruction data vector are created by the editor class.
Because of this modularity and close imitation of the
real unit the program can be easily updated and
extended.
The complete source files for the project can be
found at [Web00].

5. A MICRO PROGRAM EXAMPLE
There are several demo micro programs built for

Figure 2. The Simulator Window.

laboratory activities. One can be seen in Figure 3. It
is a 16-bit counter that uses 4 4-bit data locations in
the ALU RAM in order to store the 16-bit counted
value.

In real-life application, like audio/video decoding,
cryptography and embedded applications in general,
these units, or updated and extended versions of
them, are widely used. Some examples of
implementations using the AMD 2900 family can be
seen at [Web01].

6. FEATURES FOR THE NEXT
VERSIONS
The first version of the AMD Simulator has
accomplished all the objectives and goals which were
set for it. Although, after seeing and using the
application, new opinions and ideas for improvement
arose. Many of the issues subject to change came to
our attention after an active feedback from users,
which were actually our colleagues and teachers, so
the communication was established very easy.
Because the program is executed sequentially it can
be represented as an algorithmic diagram, with
instructions and program flow jumps. Based on this
observation, the idea of developing a diagram
designer came up. Thus the user can create the
representation of the algorithm as a diagram and then
convert it into a micro program for the AMD
processor.
Being a 4-bit processor the AMD 2901/2909 is
practically unusable for a real application and it
serves only for educational aspects. Yet it has the
possibility to connect parallel with other AMD
processors and create a processor that handles bigger
blocks of data containing 4-bit parts. The current

version of the simulator allows the user to select
between 4 and 8 bit data – that means how many 4-
bit processors will be used. In the future more data
sizes will be allowed. This feature will require

serious change on the simulator interface to
accommodate larger data, RAM and stack.
A new function will be added – the possibility to run
the program at once at a selected step rate (the actual
simulator runs a program only step by step). This
option will require the possibility to insert
breakpoints into the program. This running at once
and the breakpoints will help the user bring the
program to a specific instruction very fast, by setting
a breakpoint on it and running the program.

7. .NET ADVANTAGES
The .Net Technology along with the C# language
was clearly the best choice for this application. In the
development process, the advantages reflected on
both the final users and the developers. The main
advantage provided for users was the portability, and
for developers, the fast development tools and
features. There were many components and features
that helped by speeding up the development process.
Among them, the most important were the
modularity provided by the object-oriented language
which is C#, the good classes documentation that
allowed to choose the best class for a specific
problem, the managed environment which probably
saved very much of the debugging time.
One of the most important advantages that inspired a
future feature of the simulator is the easy way in
which this desktop application can be converted into
a web application – an ASP.NET page – only by
replacing the visual controls from “Windows.

Figure 3. An example 16-bit counter program

Forms” with visual controls from Web Controls; the
main code that controls the application is written in
C# and it is compatible with ASP.NET.

8. REFERENCES
[Petr01] Petrescu, A.C., Digital Computers Course

(Romanian version only) Chapter 10,
http://www.csit-sun.pub.ro/?op=2&sop=1

[Web00] AMD# Application and source code,
http://www.csit-sun.pub.ro/resources
/cn/windows/simulator_AMD.NET_1.01.zip

[Web01] GEC 4000 series processors (examples of
AMD 2900 implementation),
http://www.cucumber.demon.co.uk/geccl/4000ser
ies/processors.html

[Web02] AMD 2900 Structure, http://www.cast-
inc.com/cores/c2901/c2901-x.pdf and
http://vision.gel.ulaval.ca/~maldagx/publications/
Id445.pdf

[Web03] AMD 2901 bit slice - VHDL
implementations, http://tech-www.informatik.uni-
hamburg.de/vhdl

9. ADDITIONAL SCREENSHOTS

Figure 5. Loading an .AMS Assembly file in the new editor interface

Figure 4. Program Start

Figure 7. The new "block diagram" simulator interface

Figure 6. The new "classic interface" simulator window

